
Scala: why do I care?

Havoc Pennington

typesafe.com

twitter.com/havocp github.com/havocp

Asheville Coders League, August 28, 2013

This Talk

A sample of Scala...

– May be easier to understand if you know Java

– Why is Scala interesting? Is this worth your time?
– My personal take. YMMV

Some quick history and background, then a bunch of sample code.

2

A Sampler

No way to teach you Scala in 45 minutes.

But you might be inspired to learn more based on what
you see.

3

Typesafe Activator

My current work project

4

What does Typesafe do?

Reactive apps on the Java Virtual Machine

– Scala: practical, superior alternative to Java with incremental
migration path

– Akka: proven Actor model gives horizontal scale for both Java and
Scala, without the pain points of explicit threads

– Play: popular Rails-style convention-over-configuration lightweight
web framework for both Java and Scala

– We support BOTH Java and Scala, can use Akka/Play a la carte
– See http://typesafe.com and http://reactivemanifesto.org/ for more

5

http://typesafe.com/
http://reactivemanifesto.org/

Scala History and Community

7

Where it comes from

Scala has established itself as one of the main alternative
languages on the JVM.

Created by Martin Odersky, who also designed generics in Java 5
and implemented the javac compiler. He works with a team at
EPFL (École polytechnique fédérale de Lausanne) in addition to
the team at Typesafe.

Prehistory:
1996 – 1997: Pizza
1998 – 2000: GJ, Java generics, javac (“make Java better”)

Timeline:
2003 – 2006: The Scala “Experiment”
2006 – 2009: An industrial strength programming language

(“make a better Java”)

8

9

Scala drives its social graph
service: 380-400 M

transactions/day

Migrated core messaging
service from Ruby to sustain
3 orders of magnitude growth

Select Commercial Users

EU’s largest energy firm
migrated a 300K lines contract
modeling platform from Java to

Scala

Entire web site and all
services written in Scala

Approved for general
production use

10

Community Traction
Open source ecosystem with
• Hundreds of contributors
• 20+ books
• 40+ active user groups
• Plenty of github/stackoverflow activity

RedMonk GitHub / StackOverflow Analysis

GitHub Popularity

StackOverflow Popularity

The Case for Scala

Why Scala?

Here's what I hope you'll see as we look at some Scala code:

• Beautiful interoperability with Java means this is a practical way to
move to a more modern language

• Conciseness means dramatic improvement in maintainability and
productivity

• Support for immutable data structures (functional programming
style) eliminates whole classes of concurrency bugs

• Makes previously-too-hard patterns feasible, in particular async
(nonblocking) code

• Expressive (hard to define, but we all like it)
• Fun to do your work in a less tedious and more elegant way

Less To Type, So What?

14

Reading and refactoring matter more than writing the first draft.

Less Code

When going from Java to Scala, expect at least a factor of 2
reduction in LOC.

But does it matter?
Doesn’t Eclipse write these extra lines for me?

This does matter. Eye-tracking experiments* show that for program
comprehension, average time spent per word of source code is
constant.

So, roughly, half the code means half the time necessary to
understand it.

*G. Dubochet. Computer Code as a Medium for Human Communication: Are Programming Languages Improving?
In 21st Annual Psychology of Programming Interest Group Conference, pages 174-187, Limerick, Ireland, 2009.

Guy Steele: “Switching from Java to Scala reduced
size of Fortress typechecker by a factor of 4”.

15

Let's See Some Scala

Finally!

A fluent, clean look

val people = getPeople()

val adults = people filter (_.age >= 18)

val agesOfAdultsStartingWithA =
adults filter(_.name.startsWith(“A”)) map (_.age)

 getPeople() filter (_.age >= 18) filter (_.name startsWith “A”) map (_.age)

OR, equivalently

For now just note the lack of type-annotation boilerplate... it
doesn't look like the typesafe languages you may be used to

Type Inference

• Omit explicit types when it's obvious

// type String is inferred
val s = “hello”

// but spell it out if you want to
val s2: String = “hello”

Scala puts the type after the name, to allow omitting it

Hello.scala

object Hello extends App {
 println("Hello, World")
}

Hello.java

public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, World");
 }
}

Red = noise that adds no value

Imagine reading a book with 50% irrelevant words!

Noise Reduction

object Hello extends App {
 println("Hello, World")
}

Notice anything missing?

 println is a standalone function so no object to invoke it on
 “object” keyword creates a singleton, no need for singleton

machinery or “static”
 “App” provides main() boilerplate
 Class itself can have a body, in this case run from main()
 “public” is the default
 No semicolons

Something More Involved

A simple “data” class (bean?) to store a Person with “name” and “age” fields.

22

23

A class ...
public class Person {

 public final String name;

 public final int age;

 Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

}

case class Person(name: String, age: Int)

... in Java:

... in Scala:

24

Don't Repeat Yourself?
public class Person {

 public final String name;

 public final int age;

 Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

}

 We had to say “name” and “age” four times each.
 We had to say “Person” two times.
 We had to say “public” three times and “final” twice.
 We had to say “String” and “int” twice each.

25

Scala says it once

case class Person(name: String, age: Int)

 A case class is an immutable (final) set of
fields

 It automatically defines equals, hashCode,
toString sensibly, the Java version does not
(without even more code...)

 Automatically supports pattern matching (more
on next slide)

Remember: Scala puts the type after the name

26

Pattern matching

def selectCategory(person: Person) = person match {
 case Person("Havoc", _) => "Slow Race"
 case Person(_, age) if age > 60 => "Masters"
 case _ => "Regular"
}

Why is it called a case class?

(Stuff to notice: “_” as wildcard, no “return” keyword, implicit return type)

27

Tuples

def selectCategory(person: (String, Int)) = person match {
 case ("Havoc", _) => "Slow Race"
 case (_, age) if age > 60 => "Masters"
 case _ => "Regular"
}

Case classes are a “named tuple” but the name is
optional (Scala is not too opinionated):

(Stuff to notice: “_” as wildcard, no “return” keyword, implicit return type)

28

Working with collections

import java.util.ArrayList;

...

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();

 ArrayList<Person> adultsList = new ArrayList<Person>();

 for (int i = 0; i < people.length; i++)

 (people[i].age < 18 ? minorsList : adultsList)

 .add(people[i]);

 minors = minorsList.toArray(people);

 adults = adultsList.toArray(people);

}

... in Java:

... in Scala: val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

29

Anonymous functions

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

// the short form
_.age < 18

// with named parameter
person => person.age < 18

// non-anonymous version
def isMinor(person: Person): Boolean =
 person.age < 18

From “Too Hard” to “Actually Happens”

A great point from Play developer James Roper (see his blog post at
http://jazzy.id.au/default/2012/11/02/scaling_scala_vs_java.html)

Writing asynchronous, nonblocking code is a known way to greatly
improve scalability. But people typically do not write it in Java, and
they typically do write it in Scala.

It's not about whether you can - in any Turing-complete language you
can - but whether you will, and will it be maintainable.

Async is one example.

http://jazzy.id.au/default/2012/11/02/scaling_scala_vs_java.html

Async code, Java vs. Scala

Scala

Java

(Java 8 lambda is helpful, of course, but not as helpful as Scala)

OR ...

New async/await syntax

Traditional Scala way for comparison:

Scala with async/await macros (like C#):

async {
val user = await getUserById(id)
val orders = await getOrdersForUser(user.email)
val products = await getProductsForOrders(orders)
await getStockForProducts(products)

}

Less Is More

Greatly Reducing Useless Noise =
Much More Maintainable Code

Don't Repeat Yourself

Touring a Few More Tricks

 Code Blocks
 Traits
 Flexible Method Call Syntax
 Implicits
 Java interoperability

(this is a somewhat arbitrary sample of cool stuff)

Code Blocks

• Code blocks let you elegantly factor out, for example,
exception handling

def ignoringIOException[T](block: => T): Unit = {
 try {
 block
 } catch {
 case e: IOException => ()
 }
 }

ignoringIOException {
 in.close()
}

Traits: Interface + Code

• Scala has “traits” rather than interfaces; traits optionally
contain some implementation

• With no implementation, they compile to interfaces
• Multiple inheritance Just Works (Google “Scala class

linearization” for gory details that don't matter)

trait Quacker {
 def quack = println("Quack")
}

trait Barker {
 def bark = println("Woof")
}

class DuckDog extends Quacker with Barker

Flexible method call syntax

• To read Scala code you need to know: the dot and the
parens can be left out when there's no ambiguity

val s = "Hello"

val len1 = s.length()
val len2 = s.length
val len3 = s length

val s1 = s.substring(1)
val s2 = s substring 1

Few restrictions on method names

• You can name a method with any Unicode characters
• Some people call this “operator overloading” but it is

NOT like C++ where “operators” are special. In Scala,
it's just that Scala doesn't restrict method names.

• Yes you can name a method “⁋‡◾” but please use
common sense!

val a = 1
val b = 2
// “+” with method syntax
println(a.+(b))
// “+” with dot and parens omitted
println(a + b)

Implicit conversion

For example, the standard library contains:

// Convert a Byte to a wider numeric type
implicit def byte2short(x: Byte): Short = x.toShort
implicit def byte2int(x: Byte): Int = x.toInt
implicit def byte2long(x: Byte): Long = x.toLong
implicit def byte2float(x: Byte): Float = x.toFloat
implicit def byte2double(x: Byte): Double = x.toDouble

This mechanism is available for any user-defined type, while other languages
have special-case built-in rules for numeric primitives.

Implicit conversion to find a method

If a method doesn't exist, maybe a conversion can make it exist. Safe
alternative to “monkey patching” (as in Ruby, JavaScript).

// Silly example

class Quacker {
 def quack = println("quack")
}

implicit def stringToQuacker(s: String): Quacker = new Quacker

"hello".quack

Java Interoperability

Practical Migration and Interoperability

42

• Scala differs from Java only on
the source code level

• Once you have a .jar or .war, it
just looks like Java

• Scala code can seamlessly
import and use any Java class

• Projects can have a mix of
Java and Scala files

• Deploy Scala to any cloud or
container that supports Java

import java.net.URL;

Import java.io.InputStream;

URL u = new URL(“http://foo.com”);

InputStream s = u.openStream();

s.close();

Java:

Scala: import java.net.URL

val u = new URL(“http://foo.com”)
val s = u.openStream()
s.close()

http://foo.com/
http://foo.com/

Scala Has a Java Core

While Scala improves on Java, it keeps Java as the core
 the syntax is in the same general C++-like family
 on JVM level, classes are classes, methods are methods, etc.
 support for object-oriented programming in exactly Java style
 objects have toString, equals
 even annotations, generics, and other “advanced” features

correspond between Java and Scala
 collections are different but easy no-copy conversions are

provided
 Compile-time type checks

You can implement the same API in Scala that you would in Java; all
the same once it's compiled to class files.

Scala can be used as “concise Java” right away, short learning curve.

Immutable Data

Immutable Data

• Concise, readable code is one advantage of Scala
• Another huge one: support for immutable data

46

Immutability: Key to Functional
Programming

• Emphasizes transformation (take a value, return a new value) over
mutable state (take a value, change the value in-place)

• Think ƒ(x)
• Advantages include:

– Inherently parallelizable and thread-safe
– Enables many optimizations, such as lazy evaluation
– Can make code more flexible and generic, for example by supporting

composition

47

Mutable Data, Imperative Style (Java)

 public static void addOneToAll(ArrayList<Integer> items) {
 for (int i = 0; i < items.size(); ++i) {
 items.set(i, items.get(i) + 1);
 }
 }

Mutates (modifies) the list in-place

48

Immutable Data, Functional Style
(Java)

 public static List<Integer> addOneToAll(List<Integer> items) {
 ArrayList<Integer> result = new ArrayList<Integer>();
 for (int i : items) {
 result.add(i + 1);
 }
 return result;
 }

Returns a new list, leaving original untouched

49

Mutable Data, Imperative Style (Scala)

 def addOneToAll(items : mutable.IndexedSeq[Int]) = {
 var i = 0
 while (i < items.length) {
 items.update(i, items(i) + 1)
 i += 1
 }
 }

Mutates (modifies) the list in-place

50

Immutable Data, Functional Style
(Scala)

def addOneToAll(items : Seq[Int]) = items map { _ + 1 }

Returns a new list, leaving original untouched

Anonymous function applied to
each item in the list

51

Language and library support

 Most importantly, library APIs all support use of
immutable collections and other data

 But many small language features support immutability.

case class Person(name: String, age: Int)

// case classes automatically have “copy”
def celebrateBirthday(person: Person) =
 person.copy(age=person.age+1)

52

Enabling Composition

 public static List<Integer> addTwoToAll(List<Integer> items) {
 return addOneToAll(addOneToAll(items));
 }

(Composition is great for HTTP request handlers, by the way.)

53

Automatic Thread Correctness

The official Oracle tutorial on concurrency recommends immutable
data, but Java APIs don't support it, and doing it properly in Java
means lots of ceremony.

In Scala it's the default, as it should be.

Processors have more cores every day.

54

Switch to Immutable Style!

Even if you don't switch to Scala, this will improve your Java (or
JavaScript, or C, or ...)

Reserve mutability for hotspots revealed by profiling.

My config lib is an example of a Java library with an immutable API:
– https://github.com/typesafehub/config/

https://github.com/typesafehub/config/

55

 Why not Scala?

56

Some Pitfalls

● Do the usual new-technology due diligence:
● does it make sense for your team/situation?
● did you leave time for training and learning?
● walk before you run: start smaller, more Java-like

● Build times
● IDEs are usable but not as mature
● The complexity debate...

57

How I think about complexity...

● Where is the complexity (for example,
library or application)

● What are we getting for the complexity
● What happens when we don't

understand the complexity

Every library, language, or line of code adds
complexity, but what do we get for it? Is it worth it?

58

Scala and Complexity
● Clearly Scala has more language features than Java (though it isn't out

of line with say C#)
● But:

● Scala is often more consistent (e.g. no static methods,
primitives can be used like other objects, functions can be
nested, every statement evaluates to a value, etc.)

● Scala doesn't require routine type casts
● Scala removes the need for extralinguistic “fixes” such as

AspectJ, dependency injection, annotation/reflection-based
tricks

● Reading the Scala collections library may blow your mind, but
application code written with it is shorter and easier to read

● Getting Scala wrong usually means “won't compile” (compare
to C++, where it means “explode”)

● Power can be misused, but can also be used well.
Expressiveness requires freedom.

Scala in Summary

• Beautiful interoperability with Java: mix Scala and Java as desired,
no huge rewrites

• Conciseness means dramatic improvement in maintainability and
productivity

• Formerly “too hard” patterns such as async IO become possible
• Functional style with immutable data seamlessly supports parallel

computation and thread safety
• Vibrant community, hockey-stick growth curve, and available

commercial support

Recommended: Read the Book

• Very clearly-written, by Scala's
creator and designer

• Highly recommended to start
here

Some Next Steps

● Read Programming in Scala by Martin Odersky
● Try Typesafe Activator (my project!) for tutorials
● Get the Eclipse-based Scala IDE (or Scala support for

your favorite IDE/editor)
● Get the Scala support for your favorite build tool
● Try writing a discrete module or two in Scala, unit tests are

a safe place to start
● Consider a training course online or in-person, especially

if you have a group to bring up to speed
● Join the community: Hendersonville Scala User Group,

follow people on Twitter, mailing lists, StackOverflow
● Two Coursera courses: Functional Programming in Scala

and NEW Principles of Reactive Programming

Scala backup slides

Horizontal Scale

The world of mainstream software is changing:

– Moore’s law now achieved
by increasing # of cores
not clock cycles

– Huge volume workloads
that require horizontal
scaling

63

Data from Kunle Olukotun, Lance Hammond, Herb
Sutter, Burton Smith, Chris Batten, and Krste

Asanovic

Concurrency is too hard

Almost every program that uses
threads is full of bugs.

64

The Root of The Problem

• Non-determinism caused by
concurrent threads accessing
shared mutable state.

• It helps to encapsulate state in actors
or transactions, but the fundamental
problem stays the same.

• So,

 non-determinism = parallel processing + mutable state

• To get deterministic processing, avoid the mutable state!
• Avoiding mutable state means programming functionally.

65

var x = 0

async { x = x + 1 }

async { x = x * 2 }

// can give 0, 1, 2

66

Remember this code from before...
import java.util.ArrayList;

...

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();

 ArrayList<Person> adultsList = new ArrayList<Person>();

 for (int i = 0; i < people.length; i++)

 (people[i].age < 18 ? minorsList : adultsList)

 .add(people[i]);

 minors = minorsList.toArray(people);

 adults = adultsList.toArray(people);

}

... in Java:

... in Scala: val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

67

Let's make it parallel...

?... in Java:

... in Scala: val people: Array[Person]
val (minors, adults) = people.par partition (_.age < 18)

Quick Overview of Scala

• Vibrant open source community
• Significant and growing commercial adoption
• Catching fire last couple years, but has been maturing many years
• Supports both object-oriented and functional styles; “not

opinionated”
• Great interoperability with Java
• Compile-time type safety
• Type inference makes it concise and expressive, more like a

dynamic language
• “Scala” implies a “scalable language”

– Horizontal scale across cores
– Developer scale: manage complex projects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

